Home Region Sport Magazin In-/Ausland Agenda
Stadt St. Gallen
03.02.2021
03.02.2021 11:58 Uhr

Gondeln im Visier der Empa-Forscher

Aerodynamik in der Kabine: An den Fenstern misst ein Spezialist die Luftströme mit Hilfe von Luftdrucksensoren. (Bild: Streamwise GmbH)
Wissenschaftler in aller Welt arbeiten daran, das Wissen über Covid-19 zu erweitern – auch an der Empa. Forscher nehmen nun Gondeln in Skigebieten unter die Lupe.

Covid-19 ist schwer einzuschätzen, und komplexe mathematische Modelle, die Infektionsrisiken beziffern, sind letztlich Versuche, sich der Realität anzunähern – auch im Fall von Skigebieten und den vielen Menschen, die sich dort tummelnDeshalb begann das Team um Ivan Lunati von der Empa-Abteilung «Multiscale Studies in Building Physics» seine Arbeit just in dieser Wirklichkeit: in Seilbahnkabinen und -gondeln der Bergbahnen Engelberg-Trübsee-Titlis (BET).

Um dort den Faktor «Luftaustausch» zu erkunden, der bei der Verbreitung der Erreger bekanntlich eine wichtige Rolle spielt, führten die Forscher Messkampagnen durch. Sie untersuchten drei Kabinentypen: eine kleinere Gondel namens Omega 3 mit einem Volumen von gut fünf Kubikmetern für maximal acht Passagiere und zwei grössere Kabinen mit Raum für 80 beziehungsweise 77 Menschen und einem Volumen von knapp 40 beziehungsweise knapp 50 Kubikmetern.

 

 

Luftströme durch die Fenster - live

Wie sich die Luft in diesen Fahrzeugen bewegt, liess das Empa-Team zunächst mit einem mobilen System erkunden: In Zusammenarbeit mit der Firma Streamwise wurde mittels Luftdrucksensoren die räumliche Verteilung der Strömung in Echtzeit erfasst. Aus diesen Daten berechneten die Forscher dann «Luftaustausch-Raten» für die jeweiligen Kabinentypen.

In die gleiche Richtung zielten Messungen des CO2-Gehalts, der als gutes Mass für den Luftaustausch in Innenräumen gilt. Bei Fahrten in der kleinsten Kabine von der Talstation zur Bergstation in gut 2400 Metern Höhe erfassten zwei Sensoren – auf Kopf- und Bauchhöhe – die Konzentration des Gases. Die Resultate: Waren beide Schiebefenster an der rechten Gondelseite geschlossen, stieg der Wert bis zum nächsten Halt, an dem die Türen öffneten, nahezu linear an. War eines der beiden Fenster geöffnet, fiel der CO2-Anstieg deutlich geringer aus. Und bei zwei offenen Fenstern stabilisierte sich der Wert rasch um 500 ppm, also «parts per million», nach einem Anfangswert von 400 ppm, was der Aussenluft entspricht.

Die CO2-Messkampagne dauert zwar noch an, doch sie hat bereits die Resultate der Messungen mit den Luftdrucksensoren bestätigt. Konkret: In der kleinsten Kabine wurde die Luft 138-mal pro Stunde ausgetauscht, in der mittleren 180-mal – und in der grössten nur 42-mal. Die Ursachen sind laut Lunati die aufklappbaren Fenster im Dach der Gondel: «Im Gegensatz zu den anderen Kabinen ist der Luftstrom durch den Fahrtwind sehr sensibel», erklärt er. «Dort herrschen kompliziertere Strömungsverhältnisse, die weniger effizient sind.»

 
  • Luftstrom in der Gondel in Echtzeit. Bild: Streamwise GmbH Bild: zVg
    1 / 2
  • Die Farben und Pfeile zeigen in Echtzeit an, wie stark und in welche Richtung die Aussenluft in die Kabine «fliesst». Bild: Streamwise GmbH Bild: zVg
    2 / 2

Gondel vs. Büro

Auf den ersten Blick mag die Zahl von 42 Luftwechseln pro Stunde gering erscheinen, doch ein Vergleich mit anderen Innenräumen rückt den Eindruck ein wenig zurecht: In einem Zugwaggon finden sieben bis 14 Luftwechsel statt; in einem durchschnittlichen Zweier-Büro sogar nur etwa ein Luftwechsel pro Stunde. In Seilbahnkabinen tragen geöffnete Fenster also klar dazu bei, das Risiko einer hohen Aerosolkonzentration zu verringern.

Doch was ist mit der Emissionsrate an Erregern? Ein kniffliger Punkt, so Lunati, weil manche Eigenschaften von Sars-CoV-2 noch ungeklärt sind. Zudem hängt der Ausstoss bekanntlich auch vom Verhalten eines infizierten Menschen ab. Atmet dieser ruhig, oder ist er vom Skifahren so angestrengt, dass er heftig schnauft? Lacht er, spricht er – und wenn ja, laut oder leise? Gute Daten dazu sind laut Lunati derzeit rar. Noch dazu sei physikalisch nicht vollständig geklärt, wie sich Tröpfchen und Aerosole in einem Raum exakt ausbreiten.

14 Prozent infiziert

Um der Wirklichkeit so nahe wie möglich zu kommen, haben die Empa-Forscher die Rechenmodelle, die für die Abschätzung von Viren-Ausstoss oft benutzt werden, verbessert und entwickelten damit ihre eigene Abschätzung. Dabei liessen sie auch die Verbreitung des Virus in der Bevölkerung mit einfliessen – also die Wahrscheinlichkeit, dass in einer Kabine ein, zwei oder sogar mehr Virusträger anwesend sind. Ein einfaches Zahlenbeispiel für eine Kabine mit fünf Menschen: Bei einer Verbreitung des Virus von 0,1 Prozent der Bevölkerung läge die Wahrscheinlichkeit, dass eine unerkannt infizierte Person anwesend ist, statistisch bei rund 1:200 – und bei 1:10'000, dass zwei Infizierte anwesend sind. Im Falle einer grösseren Verbreitung von einem Prozent der Bevölkerung wäre dieses Risiko entsprechend 1:20 für einen und 1:1'000 für zwei Infizierte.

Dass jede 100. Person infiziert ist, sei als Spitzenwert während einer Pandemie durchaus realistisch, so Lunati; es entspricht auch den Resultaten des Massentests in Graubünden. Ein real möglicher Fall, bei dem 80 Menschen eine vollbesetzte Kabine bevölkern, wäre in diesem Fall freilich schon heikler: Dann liegt die Wahrscheinlichkeit, dass eine Person unerkannt infiziert ist, laut den Empa-Fachleuten bei rund 36 Prozent. Und dass zwei Passagiere infiziert sind bei rund 14 Prozent.

Druckluft durch Schläuche bis zum "Mund": Zwei Kameras können exakt erfassen, wie sich Tröpfchen durch Atemereignissen wie Husten in der Luft verbreiten. Bild: Empa Bild: zVg

Hust-Maschine entwickelt

In Zukunft wollen die Empa-Forscher ihre Rechenmodelle weiter verfeinern oder auch ganz neue Ansätze entwickeln, um der Wirklichkeit noch näher zu kommen. Und zudem die Datengrundlage für den Ausstoss von Viren verbessern – mit einer «Hust-Maschine», die sie in ihrem Labor entwickelt haben. Aus zwei Zylindern, vergleichbar mit Lungenflügeln, gelangt über Schläuche spezielle Druckluft in einen «Kopf»: aufgeheizt auf Körpertemperatur, angereichert Feuchtigkeit und Tröpfchen, deren Verbreitung dann zwei Kameras aufzeichnen – geeignet auch für Tests von künftigen Schutzmasken.

Mit dem Seilbahnkabinenhersteller CWA in Olten, der die Forschung verfolgt und unterstützt hat, sind bereits Gespräche über eine Kooperation im Gange. «Das Thema Luftaustausch wurde bislang eher stiefmütterlich behandelt», sagt Massimo Ratti. Daten wie diejenigen von der Empa, so der «Chief Technical Officer» von CWA, seien da wirklich hilfreich – nicht nur in der aktuellen Lage, sondern auch mit Blick auf künftige Seilbahnen im öffentlichen Nahverkehr.

Dort sind die Ansprüche schliesslich noch höher als in Skigebieten, erklärt der Fachmann: «Wir wären sehr daran interessiert, bei einem Forschungsprojekt für Kabinen mit noch besserer Luftzirkulation mitzumachen.»

Norbert Raabe/pd